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SUMMARY

The mode shapes and pressure distributions of a highly tapered
horizontal-tall surface moving in its flutter mode are determined by the
subsonic kernel-function method for calculating unsteady aerodyneamic
loads. The tail surface investigated was previously flutter tested at
Mach numbers from 0.75 to 1.20, and & kernel-function flutter analysis
was performed for Mach numbers from O to 0.98 and reported in NASA
TN D-379. The present investigation covers Mach numbers from 0.50 to
0.90 at reduced frequencies determined from the analytical flutter inves-
tigation. Those regions of the tall which ebsorb energy from the air-
stream at flutter are identified. The boundaries of these regions do
not chenge appreciably with Mach nurber in the range investigated; how-
ever, a decrease in the aerodynamic stiffness forces with increasing
Mach number is indicated.

INTRODUCTION

The calculation of flutter speeds and frequencies by the solution
of eigenvalue problems is a familiar procedure; however, few investi-
gators have proceeded beyond the determination of the eigenvalues to the
evaluation of the associated eigenfunctions and hence to the flutter
mode and the resulting pressure distribution at flutter. For thls reason,
1ittle detailed information is avallable concerning the unsteady pressure
distributions and mode shapes existing on 1ifting surfaces of finite span
at flutter. A knowledge of these pressure distributions and mode shapes
should facilitate a better understanding of the nature of flutter.
Accordingly, flutter mode shapes and pressure distributions calculated
for Mach numbers up to 0.90 are presented herein for a horizontal-tail
configuration obtained by joining the exposed semlspans of the experi-
mental model of reference 1. The configuration investigated thus has a
panel (semispan) aspect ratio of 1.66, taper ratio of 0.176, and leading-
edge sweep angle of 30°.



Subsonic flutter boundaries for this horizontal-tail surface have
been calculated in reference 1 by the kernel-function method of refer-
ences 2 and 3 and are in good agreement with experiment at Mach numbers
below 0.90. This agreement suggests that, for this configuration,
theoretical pressure distributions calculated by the method of refer-
ences 2 and 3 should be similar to the actual pressure distributions
existing on the surface at flutter. Therefore, the kernel-function
method 1s also employed in the present analysis. The kernel-function
method for calculating unsteady aserodynamic loads is a lifting-surface
theory involving direct consideration of the integral equation relating
the 1ift and downwash distributions of oscillating finite wings. Details
of this procedure are presented in reference 2.

Since reference 1 is a stability analysis, points of neutral sta-
bility (flutter points) were determined, but no explicit presentation
of mode shapes or pressure distributions at flutter was made. Flutter
pressure distributions and mode shapes are, of course, implicit in the
elements of the flutter determinant. The present investigation is thus
an extenslon of reference 1.

In the calculation of the flutter mode shapes, the generalized
coordinate ratios at flutter are obtained from simultaneous solution of
the equations of motion. The natural vibration modes of the model are
combined according to the generalized coordinate ratios to obtain the
flutter mode shapes. Modal pressure distributions are similarly combined
to yield pressure distributions at flutter. Those regions of the tail
which absorb energy from the airstream at flutter are identified.

SYMBOLS
Aij generalized aerodynamic force
Ap panel saspect ratio
b streamwise semichord, ft
bp streamwise semichord at center line, ft
by streamwise semichord at tip, ft

Cij complex constants

Cp(x,y,t) coefficient of 1lifting pressure with phase angle measured
from flutter-mode displacement
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CP*(XJY}t)

Cp,O(x)y)

f

coefficient of lifting pressure with phase angle measured
from first natural-mode component of flutter motion,

Ap/a

amplitude of coefficient of lifting pressure

frequency, cps

£y frequency of 1th natural vibration mode, cps

g structural damping coefficient

h(x,y,t) instantaneous deflection of point on tail surface in its
flutter mode, positive downward, ft

hy (x,y) normalized, natural mode shape of ith natural vibration
mode

hj(x,y) normalized, natural mode shape of jth natural vibration
mode

ho(x,y) amplitude of surface deflection at flutter, ft

- _oh

h = —, ft/sec

% T/

I{ } imaginary part of complex quantity

i unit of imaginaries, /:1

ks reduced frequency, bow/v

Lj(x,y) dimensionless series expression for aerodynamic load
distribution due to motion in jth natural vibration mode

1 exposed semlspan, ft

M Mach number

my generalized mass associated with ith natural vibration
mode (see eq. (6b)), slugs

m(x,y) local mass per unit area at point x,y (see eq. (6b)),
slugs/sq ft

n number of mcdes



AP(x;y’t)

&py(x,y)

q

qi(t)

a3

QJ(t)
»{ )
]
t

\'
Xy¥s2

al(x,y)

8(x,y)

Hi

distribution of lifting pressure, positive downward,
1b/sq ft

distribution of lifting pressure assoclated with mode
shape hj (see eq. (2)), aAp/qu, 1b/sq ft/ft

dynamic pressure, 1b/sq ft

1wt '+

generalized coordinate, g;e ™",

complex amplitude of generalized coordinate, ft

generalized coordinate, ajeﬂbt, ft

real part of complex quantity -
area of 1ifting surface panel, sq ft
time, sec
velocity of airstream, ft/sec
Cartesian coordinates (see fig. 1)
phase angle between flutter mode and its first natural-
mode component (see eq. (10)), positive when flutter
mode leads, deg
phase angle between lifting pressure and first natural-
mode component of flutter motion (see eq. (13)), positive

when pressure leads, deg

leading-edge sweep angle, deg
taper ratio, bt/bo

panel mass ratio, ratio of exposed panel mass to mass of
truncated cone of air having lower base diameter 2bg,

upper base diameter th, height 1, and density op

generallized mass-density ratio for ith natural vibration
mode (see eq. (6b))

density of alrstream, slugs/cu ft
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¢(x,y) phase angle between lifting-pressure coefficient and
flutter-mode displacement (6 - a), positive when pressure
leads, deg

¥ chordwise coordinate (see fig. )

w sngular frequency, 2xf, radia.ns/sec

wy angular frequency of ith natural vibration mode

| | magnitude of complex quantity

Indices:

i,d particular natural vibration modes
DESCRIPTION OF CONFIGURATION

The pressure distributions and mode shapes presented herein were
calculated for the tall surface employed in the flutter investigation
of reference 1. This model had a panel aspect ratioc of 1.66, a taper
ratio of 0.176, and a leading-edge sweep angle of 30°. The planform
and coordinate system used in the present investigation are presented
in figure 1. Model properties are presented in table I. The first
three measured natural-vibration modes of the taill surface are presented
in reference 1 and are reproduced, for convenlence, herein in figure 2.

ANALYSIS

The present 1lnvestigation extends the flutter analysis of refer-
ence 1 by calculating the mode shapes and oscillatory pressure distri-
butions for the tall surface at flutter. As noted in reference k4, a
basic assumption of a Raylelgh-Ritz, or modal, flutter analysis 1s that
the flutter mode may be represented by a superposition of either natural
or assumed modal functions in the form

n

BGoy,t) = ) ay()by (o) (1)
i=1

where qi(t) = aieiwt is the generallzed coordinate of the ith chosen
mode, and hj = hi(x,y) is the corresponding mode shape. (In the



present investigation, the number of modes n 1is 3.) Consistent with
the Rayleigh-Ritz, or modal, assumption, the pressure distribution
op(x,y,t) existing on the surface may be regarded as a superposition
of pressure modes

n

&p(x,y,t) = Z ay(t)apy(x,y) (2)
j=1
Xp
where A@J(x,y) S denotes the distribution of 1lifting pressure
4
associated with the mode shape hJ. Hence, the present analysis requires
the determination of the values of ai and Apj corresponding to the

flutter condition. The normalized, natural mode shapes hy are presented
in figure 2.

Pressure Modes

As noted in reference 1, the equations of motion for the lifting
surface at flutter may be written as

[ <wi> }qi (qlAil + GpAyp + IxAy3) = O (1 =1,2,3)
(3)

Ai,j = bol ﬂ hiLJ ds (&)

= (5)

where

2
~ bnp1 bg

1
— = 6a
Ky My ( )
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M; = JGF m(x,y)hi2 as (6p)
S

In equation (4), Ly 1s a complex dimensionless expression for the

aerodynamic load distribution due to motion in the jth natural mode and
is related to the pressure distribution mode as follows:

805 (x,y) = oV 5 Ly(xy) (7)
0

The procedure used in evaluating Lj conslists in representing the

aerodynamic surface loading by a series expression that automatically
satisfies the load conditions at the wing edges. (See ref. 4.) With
the load distribution represented in series form, downwash angles at a
number of control points on the surface are used as boundary conditions
to determine a like number of arbitrary coefficlents in the series.
This procedure is discussed in references 1, 2, and 3. In the present
investigation, nine control points were used. (see fig. 3.) For a
given Mach number, mass ratio, and planform, Lj is a function only of

reduced frequency kO‘ In the present investigation, values of ky at

flutter were taken from the flutter analysis reported in reference 1.
These values of k5 were then substituted into the flutter determinant

of reference 1 and the determinant was solved to insure that these
reduced frequencies corresponded to flutter conditions (defined as
g = 0). These values of kg were then used to calculate Lj

(3 =1,2,3) at flutter.

Generalized Coordinates

Generalized coordinate ratios at flutter were determined from the
simultaneous equations (3). With the previously calculated values
of Lj, the generalized aerodynamic forces Aij were calculated as

described in reference 1. At each Mach number the previously mentioned
solution of the flutter determinant provided values of wi/w for a

mass ratio p of 60. Substitution of these quantities into equa-
tions (3) ylelds a set of linear, homogeneous, algebraic equations
with the values of gy unknown; that is,



C113; + Cy0dp + Cy3d3 = 0
Co18) * Coplp + Cpzd5 =0 (8)

C518; * C3plp + C3335 = 0

where the values of CiJ are complex constants. Since the coefficient

determinant of equations (8) is equal to zero, the equations cannot be
solved explicitly for gq;, Jp, and §3. The equations can, however,

be solved for the ratios qe/ql and 55/61'
Mode Shapes and Pressure-Coefficient
Distributions at Flutter

The flutter mode shape may be determined from equation (1) which
may be written, for three modes, as

q q -
h(x,¥,t) = (b + =2 hp + =2 hz)g el (9)
9 4

With ﬁl chosen equal to unity as a convenient reference for the ampli-
tudes and phase angles of the displacements, there results

h(x,y,t) = hy + Gohy + §3h3|ei(um+a)

by (x,y)el(@t+a) (10)

where hy is the displacement amplitude at flutter and o = a(x,y) is

the phase angle between the flutter mode and its first natural-mode com-
ponent. The natural mode shapes hy (fig. 2) were taken from refer-

ence 1, and the complex ratios §2/§l and §5/§l were obtained from
solutions of equations (8).

Distributions of the lifting-pressure coefficient at flutter were
obtained by employing equations (2) and (7) as

(0oF ol \VI cl o
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2
_ Vel
Op(x,y,t) = bnp ESEKElLl + Qb + q5L3> (11)
Therefore,

= 4p(x,y,t)

1 2
= oV
> p

*
Cp (ny)t)

q q
= b8_"; L, +—= L, + 2 Ls g el (12)

0 94 4
Again, choosing ﬁl equal to unity yilelds
o * - 8x1

D 2
bg

- - 1(wt+6)
Ll + q2L2 + qBL3 e

= ¢y o(x,y)el (6+0) (13)

where 6 = 8(x,y) 1is the phase angle between the lifting pressure and
the first natural-mode component of the flutter motion, and Cp,o(x,y)

is the amplitude of the complex lifting-pressure coefficient at flutter.

In considering the dlstributions of lifting-pressure coefficient
at flutter, one must utilize the phase angle between the lifting pres-
sure and the flutter motion. This angle 1s given by

¢ =0 - a

Hence, the lifting-pressure coefficient referenced to the flutter mode
may be written as

CP = CP,O(X;Y)ei(am+¢) = Cp*(x,YJt)e-ia (14)

It should be noted that this expression for the lifting-pressure
coefficlent is a complex number with its real component in phase and

its imaginary component 90° out of phase with the displacement at the
flutter condition.
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Extraction of Energy From Airstream

It is well known that only the component of the 1lifting pressure
that is in phase with the oscillatory velocity of the lifting surface
(i.e., out of phase with the displacement) can contribute to an energy
exchange between the surface and the airstream. Thus, if energy is
extracted from the airstream, this pressure component must have the
same sense as the velocity; that is, the phase angle ¢ must be in the
range O < ¢ < 180°. Thus, energy is extracted from the airstream when
the lifting pressure leads the displacement.

RESULTS AND DISCUSSION

O+ -

The equations of motion (egs. (8)) for an oscillating 1lifting sur-
face were solved for the generalized coordinate ratios of a horizontal
tail moving in its flutter mode at Mach numbers from 0.50 to 0.90 for a
mass ratio of 60. These generalized coordinate ratios were then used
to determine the mode shapes (see eq. (10)) and the lifting-pressure-
coefficient distributions (see eq. (14)) existing on the surface at
flutter. Those reglons of the tall which extract energy from the air-
stream were ldentified.

Flutter-Mode Shapes

Figure 5 presents the maximum amplitude ho(x,y) of the flutter-

mode shapes as calculated from equation (10). It should be noted that
in equation (10), h, was referred to a unit displacement of the first

natural mode; that is, ﬁl = 1.0. Since the calculated flutter mode

consists of a complex combination of the natural vibration modes, dif-
ferences in phase exist between various points on the surface. Contours
of the phase angle a = a(x,y) Dbetween the displacement at flutter and
its first natural-mode component are presented in figure 6. Reference 1
presents calculated and experimental flutter-frequency ratios which
decrease as Mach number increases from 0.50 to 0.90. It may be con-
cluded from this variation of flutter-frequency ratio that the contri-
butions to the flutter mode of the higher natural modes decrease with
increasing Mach number. Examination of the flutter-mode amplitudes
presented in figure 5 indicates that the contribution to the flutter
mode of the third natural mode decreases as Mach number increases.
Hence, the flutter modes of the present investigation confirm the con-
clusion drawn from the flutter-frequency ratios of reference 1. The
phase-angle contours of figure 6 show that, as Mach number increases,
the phase-angle distributions are roughly similar over the inboard two-
thirds of the surface, but decrease in magnitude over the outboard
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one-third of the surface. These contours also show that the inboard
region of the tail leads the first mode component, that the TO-percent-
semispan region is nearly in phase with the first mode, and that the tip
region lags the first mode, each in varying degrees according to Mach
number.

Pressure Distribution at Flutter
Figure T presents distributions of the real and imaginary parts of

N
the complex amplitudes R{Cp,oei¢} and I{ép’oei¢} of the lifting-

pressure coefficient referred to the flutter displacement. (See

eq. (13).) Since the real part of the lifting-pressure coefficient is
in phase with the flutter displacement, it contributes an aerodynamic
stiffness force to the tall which may be positive or negative according
to its sign. The imaginary part of the lifting-pressure coefficient is
90° out of phase with the flutter displacement, and hence constitutes
an aerodynamic damping force.

From the real-component plots of figure 7, 1t is seen that the
chordwise distributions are similar to steady-state pressure~coefficient
distributions. It 1s also seen that while the real-component distribu-
tions display the same trend throughout the Mach number range investi-
gated, the magnitudes of the real components decrease with increasing
Mach number, particularly near the leading edge. This decrease in the
magnitudes of the negative real components may be interpreted as a
decrease 1n the aerodynamic stiffness contribution, which, in turn,
would be expected to produce a reduction in flutter frequency with
increasing Mach number. The data of reference 1 confirm this expecta-
tion by showing a continual decrease in flutter frequency as Mach number
increases from 0.50 to 0.90.

From the imaginary-component plots of figure 7, it 1s seen that
while the magnitudes of the pressures decrease with increasing Mach num-
ber, the regions of positive and negative out-of-phase pressures retain
essentially their same slze and location. Hence, 1n spite of the pre-
viously mentioned change in flutter mode with increasing Mach number,
the regions of the tail which experilence negative aerodynamic damping
forces are virtually unchanged from values of M = 0.50 to M = 0.90.

Extraction of Energy From Airstream
As indicated in the section "Analysis," those reglons of the sur-

face which extract energy from the airstream may be identified by the
phase angle ¢ between the lifting pressure and the flutter mode
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displacement. Specifically, values of ¢ in the range 0 < ¢ < 180°
indicate extraction of energy from the stream. Contour plots of ¢

are presented in flgure 8. Tt should be noted that figures 7 and 8 are
related, since reglons of 0O < ¢ < 180° correspond to regions of posi-
tive imaginary components of the pressure. Examination of the phase-
angle plots of figure 8 shows, as does figure 7, that the boundaries of
the unstable regions of the taill are essentially unaffected by Mach num-
ber in the range 0.50 S M S 0.90.

CONCLUSIONS

The mode shapes and pressure distributions at flutter for the
horizontal-tail model as reported in NASA TN D-3T79 have been investi-
gated analytically by the kernel-function method. The flutter mode
shape was assumed to be a combination of the first three natural modes
of the model. The results of this analysis indicate:

1. The contribution to the flutter mode of the third natural mode
decreases as Mach number increases from 0.50 to 0.90.

2. The pressure distributions indicate that the size and location
of the regions of the tail which contribute to the flutter instability
by absorbing energy from the airstream are virtually unaffected by Mach
number M in the range 0.50 € M £ 0.90.

3. The reduction in flutter frequency with increasing Mach number
which had previously been observed in NASA TN D-379 for this tall
results from a reduction in the aerodynamic stiffness forces.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., January 11, 1962.
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TABLE I.- PROPERTIES OF MODEL

Thickness ratlo . . &« &+ v ¢ o v 4o 4 4t 4 4 4 e e e e e e e e 0.035
Leading-edge sweep angle, Ajqa, deg . « ¢« ¢ « « v ¢ o o o . . 30
Streamwise airfoll section . .. . .. . . .. . . .. . . Biconvex
Streamwise semichord at center line, by, ft . . . . . . . .. . 0.625
Semlispan, 1, f£ . . « ¢ ¢« v v o 0 v 0 e e e e e e e e e e e 1.220

Panel mass, 1b-sec2/ft . + v v v v 4 v 4 4 e v 4 e e e w . . 0.05579
Panel aspect ratio, Ap . . « .+ . . .. .. ..o oL, 1.66

Taper T8t10, A + ¢« ¢ v v v« 4 4 4t e e e e e e e e e e e .. 0.176
Natural frequencies, cps:
First mode . ¢ v v v v i vt e e e e e e e e e e e e e e e Lo
Second MOGE v v &« & v o o 4 s b e 4 e e e e e e e e e e e 108

Third mode . . & v ¢ v 4 4 o s 4 4 o o o o o o + e 4 e .. 117
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\

Position of model
At maximum amplitude
— — — At rest

Trailing edge

Leading edge

FPigure 5.- Maximum amplitude ho(x,y) for flutter-mode shapes as defined
in equation (10).
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Position of model
———— -— At maximum amplitude
— — —- At rest

Leading edge

Figure 5.- Continued.
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Position of model
At maximum amplitude
—_ — —— At rest

Trailing edge
Leading edge \
P
/S

Root
(¢) M =0.80.

Figure 5.- Continued.
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Position of model
- At maximum omplitude

- —— — At rest

0
. _—— Trailing edge

/ —_—

Leading edge /- —
/
A — _—
f/

- T ——_—_Ro'&_""—_———'_"’

(a) M = 0.85.

Figure 5.~ Continued.
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Position of model
—————— At maximum amplitude

— —— —— At rest

Leading edge

=z A
V4 | N Trailing edge

(e) M =0.90.

Figure 5.~ Concluded.

g1eTI



27

*quauodmod opoum
-TeaAn3eU 3SITJ S3T PuB JI933NTJ 38 JuswWa0BTdSTP aUY3 usam3aq (A‘X)o oTdue assvyd -*9 aIndig

4620 = N ‘060 = W ()

supipoJ ' A‘ uoljisod  3SIMPIOYD

Loke”  4s = 49’ ug’ Ly’ ug 470 4 ©
— i _ _ ! ! T T ™
~ < 4
V4

\\ -~ N.
4
-4 w-
-4 8°
-0’

SRrA S| _ . ‘ .

upds|was JO UoIIpI4



28

L-1218

*panuIjuO) -9 ANITA

Gz 0 = O £gLr0 =W (q)

suplpos ‘ A‘ uoisod asmpioyn . . .
40O} 46° L48° &l kw. i&Lg- e i4e 42 4]

/\ —

uodsiwes Jo uoyansy



‘panutiuo) -9 3uanIid
6262 0 = %% f0g'0 = W ()

SupipoJ ¢ A° uoljisod  3sIMpIoyD
i4L9° &g’ iy

I T I

gTeT~1

o)

uodsiwas o uoNdDI



L-1218

*PINUTRUO) -9 2anIT4

"gne 0 = O 6g'0 = W (p)

SUDIPDJ * A UolISOd  BSIMPIOYD
49 gt L b e’ 5N A A

L40°| 46° 48° &l”

T 1 I 1

[ —| T T T

N \ 1 T

uodsiwes JO uoyoDI4



31

*papnTou0) -°g AINITJ
‘Gh2r0 = O9 €06°0 = W

supipol ‘ A‘ uoiysod asimpioyn
49° 4LG*

(3)

gTeT -1

‘

uodsiwas JO UOI§dDI



32

T R{Cpoei?}-—45.21
-40
-36F
=32
28 Negative
— — Positive
24t
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e
v 2w 37 K23 ] 57 er
Chordwise position,y, radians

Reatl port

(&) M = 0.50; kg = 0.245.

Figure T.- Complex amplitude Cp,oei¢ of the lifting-pressure coefficlent
referred to the flutter displacement. (See eq. (14).)
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Figure T7.- Continued.
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(b) M =0.75; kg = 0.25k.
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